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The Effective Thermal Conductivity of a Composite 
Material with Spherical Inclusions 1 

R. H. Davis  2 

A new method is presented for calculating the effective thermal conductivity of a 
composite material containing spherical inclusions. The surface of a large body 
is assumed kept at a uniform temperature. This body is in contact with a com- 
posite material of infinite extent having a lower temperature far from the heated 
body. Green's theorem is then used to calculate the rate of heat transfer from 
the heated body to the composite material, yielding 

3(~-1) 
k~/k = 1 -~ {~ + f(ot)O z + 0(~b3)} 

[ct + 2 -  (~- 1)~b] 

where k e is the effective thermal conductivity, k is the thermal conductivity of 
the continuous phase, e is the ratio of the thermal conductivity of the spherical 
inclusions to k, and ~b is the volume fraction occupied by the dispersed phase. 
The function f(cQ is presented in this work. Although a similar result has been 
found previously by renormalization techniques, the method presented in this 
paper has merit in that a decaying temperature field is used. As a result, only 
convergent integrals are encountered, and a renormalization factor is not 
needed. This method is more straightforward than its predecessors and sheds 
additional light on the basic properties of two-phase materials. 

KEY WORDS: composite materials; dispersions; effective properties; heat con- 
duction; thermal conductivity. 

1. I N T R O D U C T I O N  

It is often desirable to describe a two-phase, macroscopically homogeneous 
material in terms of its effective bulk thermophysical properties such as 
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shear viscosity, thermal conductivity, elastic moduli, etc. Early attempts at 
calculating bulk properties of a composite material or suspension contain- 
ing one phase dispersed within another were beset with mathematical dif- 
ficulties of a fundamental nature. Specifically, in trying to extend the 
classical results of Maxwell and Einstein (for the effective thermal conduc- 
tivity and the effective viscosity, respectively), whose range of validity is 
restricted to very dilute dispersions, the early investigators encountered in 
their analyses nonabsolutely convergent integrals--and in some cases even 
divergent integrals--which appeared to render any further progress 
impossible. These nonconvergent integrals arose from the consideration of 
a representative inclusion or particle of the dispersed phase, and the sum- 
mation of the pairwise interaction between this representative particle and 
all other particles of the dispersed phase in an infinite domain. However, 
techniques which avoided this difficulty and which allowed for the exten- 
sion of the Maxwell and Einstein results to order ~b 2, where ~b refers to the 
volume fraction of the dispersed phase, have been developed during the 
past decade. The most popular at present is the renormalization technique 
first introduced by Batchelor [ 1 ] in his analysis of the sedimentation of a 
statistically homogeneous, dilute suspension of monodisperse spheres. This 
technique has also been used to calculate the effective viscosity of suspen- 
sions [2], the effective thermal conductivity of a composite material [3], 
and the bulk moduli of elasticity of two-phase materials [4]. A second 
approach is that of Hinch E5], who constructs a hierarchy of differential 
equations describing the behavior of a two-phase material and shows how 
bulk parameters such as the sedimentation velocity can be computed in a 
systematic way. More recently, O'Brien [-6] has computed effective proper- 
ties of a dispersion by using an integral equation approach with the 
introduction of an artificial macroscopic boundary far from the region of 
interest surrounding the representative particle. O'Brien's paper [-6] gives 
an overview of further related work. 

In the present paper, a new method for predicting the effective proper- 
ties of composite media is described. Although the techniques outlined in 
this paper may be applied to a variety of problems, we focus our attention 
on the effective thermal conductivity of a two-phase material containing 
spherical inclusions. In doing so, we consider the rate of heat transfer from 
a heated body placed within the two-phase material. Since the temperature 
field decays with the distance from the heated body, only convergent 
integrals are encountered in the analysis. As a result, the new method 
described in this paper is more straightforward than earlier techniques, and 
it yields additional insight into the basic properties of two-phase materials. 
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2. THEORETICAL DEVELOPMENT 

Consider a body B, whose surface A b is kept at a constant temperature 
T*, in contact with a composite material of infinite extent whose tem- 
perature is equal to T* far from B. The composite consists of a matrix 
having a thermal conductivity k and spherical particles having conductivity 
~k, where ~ is arbitrary. These spheres are randomly dispersed throughout 
the matrix and are each of radius a, which is assumed to be very much 
smaller than the linear dimensions of B. Hence, on a macroscale the com- 
posite behaves as a continuum with an effective thermal conductivity ke, 
which is to be determined. In our theoretical development, it is assumed 
that k, ~, and ke are temperature independent. However, provided that the 
temperature varies significantly over a length scale that is large compared 
to the particle size, the final result for kJk is independent of temperature. 
This restriction has already been made. 

2.1. General Expression for the Effective Thermal Conductivity 

Let T(x)-[T*(x)-T*]/(T~-T*~) be the dimensionless tem- 
perature within the composite at any given point x exterior to B [with 
T*(x) being the dimensional temperature] and T'(x) be the corresponding 
dimensionless temperature in the absence of spherical inclusions, i.e., the 
undisturbed temperature field within a solid consisting entiry of matrix 
material. Both T and T' are equal to unity on Ab and vanish at infinity. In 
addition, T'(x) satisfies LaPlace's equation for all points x outside B, with 
no discontinuities in its value or that of its derivatives. In contrast, T(x) 
satisfies LaPlace's equation for all x outside B, but on the surface of each of 
the spherical particles its normal derivative changes by a factor of ~ when 
moving from the inside to the outside. Consequently, applying Green's 
theorem to the space occupied by the matrix material, we immediately 
obtain that, 

N 

fA (TVT'-T'VT)'ndA=(~-I) E ;A T'VT'ndA (1) 
b m = l  m 

where the summation is over all N =  ~ spherical inclusions within the 
composite, Am is the surface of the spherical inclusion m, and n is the out- 
ward unit normal to the surface of the sphere. Also, in the last term of 
Eq. (1), the temperature gradient VT is evaluated on the inside of the 
sphere. Letting A and Q' be the corresponding total heat fluxes from B, i.e., 

Q=--k(T~-T*)~ VT. ndA and Q'=-k(T*-T*)~ VT'.ndA 
~ A  b 'JA b 

(2) 
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we therefore obtain that 
N 

Q - Q ' = k ( T * - T * ) ( c ~ - I )  ~ IA T ' V T . u d A  (3) 
r n ~ l  m 

since both T and T' are equal to unity o n  A b . 

Consider next a spherical inclusion with its center at xl. On expanding 
T' in a Taylor series about x l and rearranging the integral, we find that, for 
this "reference sphere," 

f A, T' VT" n dA = VT'(xl) " fv~ VT dV + O(e5) 

47za 3 
- VT'(xl) .VT(xl)+O(e 5) (4) 

3 

where V1 refers to the volume of the reference sphere, and e is the ratio of a 
to the linear dimension of B and is assumed to be small. For future 
reference, we also note that the dipole strength of this sphere is defined in 
the usual manner as 

VT dV 47za3 
S(X1) ~ k((z - l ) f v  I =---~--- k ( ( ~ -  1) VT(xl) (5) 

Since for a medium of random structure the reference sphere can be cen- 
tered anywhere outside A;, with a uniform probability density 
3~b/4rca3--where ~b is the volume fraction of spheres and A{, encloses a 
region B' consisting of B and a layer of thickness a surrounding B--we can 
ensemble average Eq. (3) to give 

(Q) k 
f VT ' ( x l ) 'V (T(x~ lx l ) ) ldX  1 (6) Q, - 1 + Q---; (T~' - T * ) ( a -  1)~b ~0 

where 17 o is the volume exterior to B'. In Eq. (6), use has been made of 
Eq. (4) with the 0(55) term neglected. Here, ( Q )  is the total heat flux from 
B ensemble-averaged over all possible configurations of the dispersed 
spheres, and V(T(Xl lXl) ) l  is the conditional ensemble-average value of 
the temperature gradient at x 1--averaged over all configurations of par- 
ticles in the composite, given that there is one particle with its center fixed 
at xl;  see Jeffrey [3] and Hinch [5]. It is easily seen that the right-hand 
side of Eq. (6) is equal to the effective thermal conductivity of the com- 
posite divided by that of the matrix material, and its definition given here is 
entirely consistent with the corresponding expressions given by earlier 
investigators. 

2.2. Green's Theorem for the Ensemble-Average Temperature Gradient 

Our next step is to apply Green's theorem using the functions T(x) 
and s- l (x ,  y ) -  i x -  Y1-1, with x being a fixed point anywhere in the corn- 
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posite, and y a variable point. Since s -1 has a fundamental singularity at 
y = x and is otherwise harmonic, we obtain in the usual fashion, in lieu of 
Eq. (1), 

T(x) = -~-~ s - 4-----~ s 
b m = [  m 

We shall find it useful to average this equation over the ensemble of all 
possible configurations of spherical inclusions. This unconditional ensemble 
average is denoted by < T(x)> 0. Also, we shall find the conditional ensem- 
ble average of Eq. (7)--given that there is one sphere centered at x~--and 
denote this <T(xlx 1) >j ; similarly, the quantity (T(x] x i, x2)>2 represents 
the average temperature at x over all realizations having two spheres fixed 
at x~ and x2, etc. Since for random dispersions there is a uniform 
probability density equal to 3~9/47ta 3 for spheres to be located outside B', 
provided that they are centered at distances greater than 2a from the center 
of any fixed sphere, the unconditional and conditional ensemble averages 
of Eq. (7) are 

<r(x)>o-- 1-V<r(y)>o.nclA 
q-7~ JAb S 

1-6~'a S ;C~o;A, IV<T(ylx~)>I"nWAclxls (8a) 

1 1V<T(ylxl)>.ndA 

4-n f~,!V(T(ylxl)>, 'ndA 

3(ct-l)~bf fa iV(T(ylx,,x2)>2.ndAdx2 (Sb) 
F6PJ  v, 

iv< /-,T(xlx,, x2)>2 = - 4--~n .~A~ s T(ylxx,x2)>2"ndA 

V< r(ylxl, x2) >2"n dA 
1 

@ V(T(y{xt'x2)>2"ndA 
2 

3(7-l)~b~" fA 1 V < T ( y t x " x 2  x3))z'ndAdx3 
16rc2a 3 J92 3s 

(8c) 
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where 1,51 is the volume exterior to B' and to an excluded sphere of radius 
2a centered about xl, and 122 is the volume exterior to B' and to excluded 
spheres of radius 2a centered about x~ and x2. Similar equations may be 
written for more than two spheres fixed. We now note that the uncon- 
ditional average temperature is equal to the undisturbed temperature, 
( T ( x ) ) o =  T'(x), everywhere in 17" o as a result of the homogeneous nature 
of the composite material on a macroscopic scale. Moreover, Eq. (7) may 
be rederived for the function T'(x), which is the temperature field in the 
absence of the dispersed phase, to yield simply 

1 fA 1Vr"ndA T ' ( x ) = - ~  bs (9) 

It may appear surprising that an equivalent statement cannot be made for 
(T(x))o,  in view of the fact that the two functions are equal everywhere in 
I;'o [see Eq. (8a) for comparison]. The difference results from there being a 
region of inhomogeneous material of thickness a surrounding the heated 
body B. On the inside of this thin layer, A b is in contact with matrix 
material only due to the exclusion effect of the spherical inclusions not 
overlapping with B, whereas on the outside of this layer is composite 
material with a uniform volume fraction r of spheres. This nonuniformity 
gives rise to a jump across this layer in the normal derivative of the dimen- 
sionless temperature in proportion to ( e -  1)r which leads to the last term 
on the right-hand-side of Eq. (8a). 

Since we require the spheres to be small in size compared to the 
heated body, fixing the position of a finite number of these spheres has a 
negligible effect on the normal temperature derivative at the surface of the 
heated body. Thus, the first terms on the right-hand sides of Eqs. (8a), 
(8b), and (8c) are all equal and can be evaluated by rearranging Eq. (8a). 
We may then let x be a point on the surface of the reference sphere 
(subscripted 1); multiplying Eq. (8) by the unit normal to this sphere and 
integrating over its surface yields 

V(T(Xl))O = VTt(Xl) (10a) 

c~+2 
- - V ( T ( x l  [xl))1 

3 

=VT,(Xl )+3(c t -  1)~b ( fA V(s-~)V(T(ylx2))~ .ndA dx 2 
l&r2a3 J~0 2 

3 (c~-1 ) r  fA V(s 1)V(T(ylxl,xz))2"ndAdx2 (lOb) 
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+ 2 V(T(x 3 ~[x~,x~)>2 

= VT'(x~ ) - ~ ;A= V(S-1) V< T(y I x~, x2) >2' n dA 

3 ( ~ - 1 ) ~ f  f~ V(s_l)V(T(y[x3>t.ndAdx3 
+ 16~ 2a3 9o 3 

3(~-1)06f  fA V(s-~)V(T(ylx"xz'xz)>3"ndAdx3 
/-6~-~5 ~ ~ 3  

(10c) 

2.3. Hierarchy of Integral Equations in Powers of 

In order to use Eq. (6) to calculate the heat flux from the body 
B--and, hence, the effective thermal conductivity of the composite 
material--the ensemble-averaged temperature gradient at the center of a 
single fixed spherical inclusion is needed. Upon rearrangement of Eq. (10b), 
this quantity is given by 

V (  T(xI  [Xl)>l  

_ 3 VT'(xl)+ 9(c~-1)06 f fAW(s_l)V<T(y]x2)>l.ndAdx 2 
:r 1 6 ~ a ~ 2 )  a3 J~O VI 2 

9 ( a -  1)06 
16~-~ 2~ 2)a3 ye~ IA (Vs- ')[V<T(y I x~, x2)>2 

- V (  T(y I x2)>1] "n dA dx2 (11) 

The first term on the right-hand side of Eq. (11) is the temperature gradient 
at the center of the reference sphere if it were placed alone at position x 1 in 
the undisturbed temperature field, T'(x). If the remaining two terms are 
neglected, which are higher order in 06, then substituting Eq. (11) into 
Eq. (6) yields Maxwell's result as stated by Jeffrey [3]: 

3(~- 1)06 ke/k = 1 + ~-0(06 2) (12) 
a + 2  

In deriving Eq. (12), we have used the fact that 

f VT'(x,)'VT'(xi)dxl=Q' (13) k( T~ - T* ) 3o 

which follows from Eq. (2) and application of the divergence theorem. 
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The second term on the right-hand side of Eq. (11) is a volume 
exclusion effect which discounts any configurations in the ensemble of 
spheres for which a second sphere would physically overlap the reference 
sphere. By reversing the order of integration and again applying the 
divergence theorem, we can show that this term is equal to 
( e -  1) ~bV(T(xt Ixl)>l/(~+2),  so that Eq. (11) may be rewritten as 

-- O~ _.~_~'-~ ~ b V< T(Xl [ x1) > 1 = ~ - - 2  VTt(Xl) 

9(c~- 1)~b 
16~2(~ + 2) a3 fvi f A2 V(x-1)[V( T(y[xl' x2) >2- g < T(ylx2l >l] "ndAdx2 

(14) 

If we now neglect the last term in this equation, we find from Eqs. (6) and 
(14) that 

3 (~ -  1)~ k~/k = 1 -+ t- O(~b 2) (15) 
[ ~ + 2 - ( ~ -  1)~b] 

which is identical to the lower bound for the effective thermal conductivity 
as given by the treatment of Hashin and Shtrikman [7]. It is also 
equivalent to the result given by Maxwell himself [8]. 

Equation (14) for the conditional ensemble-average temperature 
gradient at the center of the reference sphere is exact for all possible values 
of the volume fraction ~b. However, it is rather unwieldy because of the 
integral term involving the conditional ensemble-average temperature 
gradient with two spheres fixed, {T(yl xl, x2)>2. In order to simplify this 
integral term, we substitute Eq. (10c) and the gradient of Eq. (8b), with xl 
replaced by x2 and x set equal to Xl, into Eq. (14) to yield the approximate 
formula 

~ - 1  3 
( 1 -  ~--~  ~b)V< T(xx I xl)> l = ~--~  VT'(x 1) 

(16) 

The error terms proportional to @2 in Eq. (16) arise from the neglected 
terms proportional to ~b in Eqs. (Sb) and (10c). When Eq. (16) is used in 
Eq. (6), the error terms in the effective thermal conductivity become 0(~b3). 



Thermal Conductivity of a Composite Material 617 

This technique suggests a rational method to proceed, in principle, to 
determine a power series in ~b for the effective thermal conductivity. 
Namely, the 0(~b 3) contribution to the power series may be obtained by 
retaining the terms proportional to ~b when substituting Eq. (10c) and the 
gradient of Eq. (8b) into Eq. (14). These terms are evaluated by using 
Eq. (10d) (not shown) and the gradient of Eq. (8c), with the terms propor- 
tional to ~b in the latter equations neglected. Higher-order terms in ~b may 
be found by successive substitution, with the terms proportional to ~b in the 
last equations in the substitution--those with the largest number of spheres 
fixed--always neglected. 

2.4. The Expression for the Effective Thermal Conductivity 
Correct to 0(~ z) 

In order to complete our solution, the integrand of Eq. (16) must be 
evaluated. The term V( T(x~ I x~, x2))2 is equal to the temperature gradient 
at the center of a sphere located at xl, given that there is a second sphere 
centered at x2, with both spheres being placed in an undisturbed tem- 
perature field with gradient VT'(x~). This can be deduced from Eq. (10c), 
with the terms proportional to ~b neglected as before. Similarly, 
V(T(xl lx2)) l  is equal [with an 0(q~) correction] to the temperature field 
at xl (where there is not a fixed sphere), given that there is a sphere cen- 
tered at x2 in an undisturbed temperature field with gradient VT'(x:). 
These problems have been solved by Jeffrey [3], and the details are not 
repeated here. The key result is that 

3 
V( T(xi Ix1, x2))2 - Z - ~  V( T(x~ I x2))~ 

3 ~ ( a ) P [  rr �9 VT'(xl)] + 0(~b) (17) - ~ + 2  ApVT'(xI)-BP-ff y 
p = 6  

where r = x 2 - x l ,  r=llrrl, and the coefficients Ap and Bp a re  known 
functions of e. 

Using the above result in Eq. (16) and performing the integration over 
the domain 1~ 1 yields 

1 -- ~-~--~ ~b V(T(Xl [ Xl))1 

VT'(xl) + 0(~b 2 ) (18) -c~+23 VT'(x,)+ ~ (p_3)2P_  3 
Bp--3Ap 

p ~ 6  
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Fig. 1. The function f(c0, which appears in the expression for the effec- 
tive thermal conductivity given by Eq. (19). 

The effective thermal conductivity may now be found from Eq. (6), which, 
using Eq. (13), gives our desired result: 

3(~- 1) k~/k = 1 + {~b + f(~)~2 + 0(r (19) 
~ + 2 - ( ~ -  1)~b 

where f ( ~ ) =  '~;=6 [(Bp- 3Ap)/(p- 3)2 p- 3], which is shown in Fig. 1. 

3. DISCUSSION 

A similar expression to Eq. (19) for the effective thermal conductivity 
was obtained earlier by Jeffrey [3]. This expression differs slightly from 
that found in the present work, but the two are in agreement to 0(~b2). In 
arriving at his result, Jeffrey [3 ] considered a composite material of infinite 
extent on which an undisturbed linear temperature field was imposed. As in 
the present work, the ensemble-averaged dipole strength of a single fixed 
sphere was needed, where this dipole strength is given by Eq. (5) as 
(S(xllxl))l=4~a3(ot-1)V(T(xllxl))l/3. The approach taken was to 
equate this quantity to the dipole strength of the reference sphere in the 
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presence of only one other sphere and then to integrate over all possible 
locations of the second sphere, i.e., r ~> 2a. However, Jeffrey I-3] found that 
the pairwise correction to the dipole strength of the reference sphere due to 
the presence of the second sphere varied with distance as (a/r) 3 when the 
spheres are far apart. The integration of this correction over an infinite 
domain gives a nonabsolutely convergent integral. Jeffrey [-3] therefore 
needed to modify his approach by introducing a renormalization quantity. 

In the present approach, the undisturbed temperature gradient, 
VT'(x), varies inversely with the square of the distance from the heated 
body. Thus, the correction to the dipole strength of our reference sphere 
due to the presence of a second sphere varies as (a/r) 5, rather than (a/r) 3, 
when the two spheres are far apart. From this, we expect that the non- 
absolutely convergent integral difficulties that arose when earlier workers 
tried to integrate the two-sphere solution will not be encountered here. 
Indeed, both of the integrals in Eq. (10b) are absolutely convergent and 
can be evaluated without rearrangement. Nonetheless, the 0(~b 2) con- 
tribution to the effective thermal conductivity is not given entirely by the 
solution for two spheres placed in the undisturbed temperature field. 
Rather, the actual environment of these two spheres is the undisturbed 
temperature plus an 0(~b) term from all of the remaining spheres. This term 
is given by the second term on the right side of Eq. (8a). 

Our approach of averaging the integral representation of the solution 
of the governing equations can also be applied to problems--such as the 
one considered by Jeffrey [3]--where a nondecaying temperature field is 
applied to a composite of infinite extent. In this case, Eq. (7) for the tem- 
perature is modified by replacing the term arising from the source body B 
by the far field temperature T~(x) or by an integral over a macroscopic 
boundary far from the region of interest; see O'Brien [6]. This equation is 
again averaged with 0, 1, 2,... spheres fixed, and we recover Eq. (10) with 
T'(x) being the applied temperature field without any spherical inclusions 
present. The fundamental difference is that now the integrals on the right- 
hand side of Eq. (10b) are no longer absolutely convergent and must be 
recombined as in Eq. (11). This step, however, is equivalent to the renor- 
malization procedure used by Jeffrey [3]. The renormalization quantity 
would then be produced automatically by the present approach. 

The method described in this paper may also be used to find the 0(~b 2) 
contribution to other effective properties, such as elastic moduli and 
viscosity, for composite mdia composed of a continuous phase and disper- 
sed spherical inclusions. The technique may also be extended, in principle, 
to finding higher-order contributions to these effective properties. However, 
even the 0(~b 3) contribution requires the solution for the dipole strength of 
a reference sphere in the presence of two other fixed spheres. To date, a 

840/7/3-10 
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general solution of this three-sphere problem is not available. Fortunately, 
the higher-order contributions are not generally needed because, from com- 
parison with exact solutions for ordered arrays of spherical inclusions [9],  
Eq. (19) for the effective thermal conductivity is accurate to within a few 
percent for all possible values of ~ and ~b, except in the dual limit ~ ~ 
and ~b ~ ~b . . . .  where ~max ~ 0.62 is the maximum random packing volume 
fraction with the spheres touching one another. In this limit of densely 
packed, perfectly conducting spheres, the effective thermal conductivity 
approaches infinity logarithmically and may be estimated from the for- 
mulas by Batchelor and O'Brien [10] or Sangani and Acrivos [9]. 
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